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The late stages of transition to turbulence in 
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The late stages of transition, from the A-vortex stage up to turbulence, are 
investigated by postprocessing data from a direct numerical simulation of the 
complete K-type transition process in plane channel flow at a Reynolds number of 
5000 (based on channel half-width and laminar centreline velocity). The deterministic 
roll-up of the high-shear layer that forms around the A-vortices is examined in detail. 
The new vortices arising from this process are visualized by plotting three- 
dimensional surfaces of constant pressure. Five vortices are observed, with one of 
these developing into a strong hairpin-shaped vortex. Interactions between the 
different vortices, and between the two channel halves, are found to be important. 
In  the very last stage of transition second-generation shear layers are observed to 
form and roll up into new vortices. It is postulated that at this stage a sustainable 
mechanism of wall-bounded turbulence exists in an elementary form. The features 
which are locally present include high wall shear, sublayer streaks, ejections and 
sweeps. Large-scale energetic vortices are found to be an important part of the 
mechanism by which the turbulence spreads to other spanwise positions. The 
generality of the findings are discussed with reference to data from simulations of H- 
type and mixed-type transition. 

1. Introduction 
Transition from laminar to turbulent flow near a wall can proceed in a number of 

different ways, depending on the nature of the disturbances in the flow. The best 
understood process of transition is that beginning from very low levels of background 
noise. The mean flow, above a critical Reynolds number, is unstable to small- 
amplitude disturbances, and the process can be described well by linearized 
disturbance theory (the Orr-Sommerfeld equation). For incompressible two- 
dimensional mean flow, two-dimensional disturbances are the most rapidly amplified. 
Such waves (known as Tollmien-Schlichting or TS waves) remain two-dimensional 
during their nonlinear development and do not lead directly to turbulence. Further 
theoretical progress has been made by considering the linear instability of a modified 
base state, consisting of the basic laminar flow with superimposed finite-amplitude 
TS waves. This secondary instability theory (reviewed by Herbert 1988) was a major 
success of theoretical transition research in the 1980s. It explains the deformation of 
the TS waves into the experimentally observed A-shaped vortices. These A-vortices 
can be aligned in the streamwise direction (K-type transition), staggered (H-type), 
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or a mixture of both. This is still far from turbulence, and it is the objective of this 
paper to examine some of the physical phenomena taking place in the later stages of 
transition. 

Three key experimental investigations of transition in two-dimensional boundary 
layers appeared in the early 1960s and to a large extent motivated theoretical 
investigations of the transition process beyond the primary instability stage. All 
three generated two-dimensional disturbances artificially, and then followed the 
three-dimensional evolution of the flow. Much of the terminology for the late stages 
of transition comes from Klebanoff, Tidstrom & Sargent (1962). They described the 
breakdown process as an abrupt event, indicated by the appearance of spikes in the 
velocity-time traces. They associated these spikes with the formation of hairpin- 
shaped eddies in the high-shear layer that forms around the A-vortex. The idea that 
these eddies might form from an inflexional instability in the high-shear layer, 
amplifying high-frequency background disturbances, is what we now call the tertiary 
instability concept, which will be discussed later in this paper. The appearance of the 
spikes was associated with a kink in the high-shear layer by Kovasznay, Komoda & 
Vasudeva (1962), although they claimed that the spikes were not vortices. Hama & 
Nutant (1963) made detailed flow visualizations, which gave much insight into the 
details of the three-dimensional development of the flow. They observed the A- 
vortex develop into a vortex with an open tip, and then a breakdown into 
concentrated smaller-scale vortices. More detailed measurements of the A-vortex 
were made by Williams, Pasel& Hama (1984), resolving some earlier disagreements 
regarding the nature of the A-vortex and the high-shear layer around it. 

A series of experiments in plane channel flow by Nishioka and co-workers have 
greatly added to our knowledge of the late stages of transition. Nishioka, Iida & 
Ichikawa (1975) demonstrated that essentially the same transition process takes 
place in channel flow as in boundary-layer flow, and confirmed theoretical predictions 
of a nonlinear subcritical instability. The concept of a tertiary instability, leading to 
hairpin vortices, was claimed to be confirmed by Nishioka, Asai & Iida (1980) (NB 
the terminology can be confusing - before the development of the secondary 
instability theory this instability was often called the secondary instability). 
Nishioka, Asai & Iida (1981) and Nishioka & Asai (1984) made detailed measurements 
of the flow field in the multi-spike stage. Connections were made to the flow features 
in fully developed turbulent flow, including streaks in the near-wall region. A review 
of the work of this group can be found in Nishioka (1985). 

The work of Nishioka et al. (1980), claiming to confirm the presence of a tertiary 
instability, has been criticized by Kachanov et al. (1985) and Borodulin & Kachanov 
(1989). Kachanov et al. (1985) observed that the spike formation occurred strictly 
periodically and concluded that the formation of the spikes was a deterministic 
event, and therefore not a manifestation of a tertiary instability. Borodulin & 
Kachanov (1989) distinguished between the process of spike formation and the shear- 
layer instability. They claimed that the former is deterministic, while the latter leads 
to a ‘randomization’ of the flow. This conclusion has been supported by some 
numerical simulations by Rist (1990), who also made stability calculations similar to 
those of Nishioka et al. (1980). 

Numerical simulation has emerged during the last decade as an additional tool for 
investigating the transition problem. The simulations are limited to simple 
geometries and low Reynolds numbers by the large computer resources that are 
required. However, they make possible the solution of simplified transition problems 
without empirical closure assumptions and have proved invaluable in establishing 
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the secondary-instability theory. A recent review of the techniques involved, and 
some of the successes of simulations, can be found in Kleiser &, Zang (1991). An 
important feature of the simulations is that they provide access to three-dimensional 
fields of the pressure and all the components of velocity. These variables can also be 
accurately differentiated, which allows the study of quantities which cannot be 
accurately measured experimentally. A well-resolved simulation of the complete 
transition process in plane channel flow, using the temporal model (assuming 
periodicity in the streamwise direction), was made for the first time by Gilbert 
(1988). 

The availability of complete flow-field information in a numerical simulation 
makes it worthwhile to re-examine the physical phenomena taking place in the late 
stages of transition. The intention of this paper is therefore to present a detailed 
account of the phenomenology of the later stages of transition, and to examine the 
mechanisms at work. A summary of the numerical database is given in $2, together 
with a discussion of the problem of vortex identification. In  $3  we examine the roll- 
up into vortices of the high-shear layer that develops around the h-vortex, and 
describe in detail the space-time evolution of these vortices. An additional step in the 
transition process is presented in $4, this being the formation and roll-up of a second- 
generation shear layer and the appearance of an elementary form of wall-bounded 
turbulent flow. Further topics that are dealt with include the loss of predictability 
during the transition process ($5) ,  the various large eddies that form during 
transition, together with the spanwise variation of properties such as skin friction 
($6), and a discussion of the generality of the findings ($7). 

2. Methodology 
2.1. Numerical simulation database 

Data for the current investigation are taken from a simulation by Gilbert (1988) of 
the transition process in plane channel flow with constant volume flow rate. The 
computational domain for the simulation is shown on figure 1.  The streamwise 
direction is denoted by xl, the spanwise direction by x,, and the wall-normal 
direction by 2,. The lengths of the computational box are given by L,, L, and L,, and 
the velocity components by v,, 2r2 and v,. All quantities are non-dimensionalized with 
the laminar centreline velocity and the channel half-width. Periodic boundary 
conditions are applied in x1 and x,, and zero-slip boundary conditions are applied on 
the walls. 

The numerical method is fully spectral. The periodic directions are treated with 
Fourier expansions and the wall-normal direction with a Chebyshev expansion. The 
incompressibility constraint, including the no-slip boundary condition, is solved 
using the influence-matrix method of Kleiser & Schumannn (1980), a full description 
of which can be found in Canuto et al. (1988). The convective terms are de-aliased 
using the 3/2 rule. For all the data presented here the second-order Adams-Bashforth 
method was used for the time-advance of the nonlinear terms, together with 
Crank-Nicolson for the pressure and viscous terms. The simulation of K-type 
transition up to the multi-spike stage has been repeated with the Adams-Bashforth 
method replaced by a Rung-Kutta method of third-order accuracy, with no 
noticeable differences. All the simulations were run with an assumed spanwise 
symmetry about the plane x, = &,. This reduced the computer time and storage 
requirements by a factor of two. The same type of symmetry appears naturally in 
transition experiments, especially when periodic forcing in the spanwise direction is 
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FIGURE 1.  The computational domain. Subscript I refers to the streamwise direction, 2 to the 
spanwise direction, and 3 to the wall-normal direction. 

applied (for example by sticking tape to the wall under the vibrating ribbon in the 
experiment by Klebanoff et al. 1962). 

In  this paper we will mainly present results from a simulation of K-type transition. 
Details of this simulation, together with an overview of the complete transition 
process up to statistically fully developed turbulence, can be found in Gilbert (1988) 
and Gilbert & Kleiser (1990). The Reynolds number was 5000, based on the channel 
half-width and laminar centreline velocity. The simulation began with a finite- 
amplitude (3 % peak) TS wave, together with two equal and opposite oblique waves 
(amplitude 0.1%). For all these waves the eigenfunctions for v1 and v2 are 
antisymmetric in x,, while the eigenfunction for v3 is symmetric. Therefore there is 
a symmetry in the initial condition between the upper and lower channel halves - 
everything in the lower channel half is mirrored in the upper channel half, but shifted 
half a box length in the x1 direction. The box lengths were L, = 27c/1.12, L, = 2x/2.1 
and L, = 2. The reference frame for the simulation moves with the phase velocity c 
of the TS wave (c = 0.281 75). Numerical resolution was raised during the simulation, 
as the energy content of higher modes increased, ending at 12@ points. About eight 
orders of magnitude in kinetic energy were maintained between the largest and 
smallest wavenumbers all the way through the transition up to turbulence. 
Resolution requirements are largest in the late stages of transition, and the final 
turbulent state is probably a little over-resolved. Gilbert (1988) found that statistics 
from the fully developed turbulent state were in good agreement with the simulations 
of Kim, Moin & Moser (1987). 

Several other transition cases have been investigated using the same code. 
N. Gilbert (1989, unpublished) has simulated a case of mixed transition, where 
several two- and three-dimensional waves, each consisting of many Orr-Sommerfeld 
modes, were used for the initial condition. The box for this simulation was twice as 
large in x1 and x,, and a peak resolution of Nl x N, x N, = 160 x 160 x 128 waa used. 
Hartel & Kleiser (1992) have simulated the pure subharmonic case, similarly on a 
160 x 160 x 128 grid. The computational box in this case was twice that of the K-type 
simulation in the streamwise direction, and the same in the spanwise direction. In  the 
current work these other databases have been used to check the generality of our 
findings. Detailed results will not be presented here, but comments will be made aa 
appropriate. All the simulations have been made for a Reynolds number of 5000. 

Some comment on the temporal nature of the simulation is in order. In a direct 
numerical simulation one selects appropriate initial and boundary conditions and 
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then solves the governing equations of motion. Then, assuming that adequate 
resolution is made in space and time, one has a complete solution to the given 
problem. Such solutions of the Navier- Stokes equations are of much interest in their 
own right, since the available analytic solutions are rather meagre. A separate 
question to be asked is how well the temporal model problem translates to the 
laboratory flow, where there is no periodicity in the streamwise direction. In  the 
temporal channel flow the solutions to the Navier-Stokes equations exhibit laminar 
flow, linear instability, secondary instability, A-vortices, high-shear-layer breakdown 
and turbulence in the temporal simulation just as in the experiments. Statistics for 
the turbulent flow are in good agreement with recent experiment results (Nishino & 
Kasagi 1989). Thus there is good reason to believe that physical phenomena which 
occur on a length-scale smaller than the computational box length (almost certainly 
everything that happens beyond the A-vortex stage) are captured in the temporal 
simulations. One must always be on the look-out for phenomena which might be 
different in the spatial and temporal approaches. However, in this investigation we 
have found no evidence for any such deviation. Further discussion on this point is 
provided in Kleiser & Zang (1991, 53.4). 

2.2. Vortex identi$cation 
A vortex is an entity that is conceptually very easy to appreciate, but which is 
difficult to formulate precisely. In  the current application we have vortex motions in 
a three-dimensional space, evolving rapidly in time. In  order to make full use of the 
enormous amount of data from the simulations, it would be useful to have a scalar 
measure of a vortex, whose size gave the strength of the vortex. Such a measure could 
then be used to follow the vortices as they evolve in space and time using computer 
graphics. Unfortunately no perfect measure of a vortex is known. Vorticity is 
problematic, since it canot distinguish between shear layers and vortices - any shear 
layer has vorticity, whether or not vortices are present. In the problem under 
consideration this failure has already led to confusion over whether the kinks that 
form in the high-shear layer around the A-vortices are really vortices (Kovasznay 
et al. 1962). Also vortex lines (lines everywhere parallel to the local vorticity vector) are 
inadequate. Kleiser & Laurien (1985) showed that the A-vortex does not necessarily 
consist of a bunch of vortex lines. Conversely, Robinson (1991) demonstrated that 
vortex lines can given the illusion of hairpin vortices, even when there are no such 
vortices in a flow. 

An alternative measure of a vortex has been developed by considering expansions 
around critical points in a flow field (see Perry & Chong 1987 for a review). The local 
topology of the flow can be found by examining the eigenvalues of the velocity- 
gradient tensor av,/ax,. Hunt, Wray & Moin (1988) have advocated the second 
invariant of the velocity gradient tensor as a scalar measure to locate vortices in 
space. In  their notation 

which for incompressible flows is equal to -2Q in the notation in Chong, Perry & 
Cantwell (1990). Large negative values of I1 indicate regions in the flow where 
vorticity dominates over strain. 

Another measure of a vortex is the static pressure. Static pressure is a relative 
minimum in the centre of a region of strong rotational fluid motion, and the size of 
the pressure depression gives a measure of the strength of a vortex. Although this 



324 N .  D .  Sandham and L .  Kleiser 

FIQURE 2. Three-dimensional views of a surface of constant I1 (the second invariant of the velocity- 
gradient tensor) : (a) t = 0, I1 = -0.025, showing the initial condition of two vortices corresponding 
to an antisymmetric TS wave; ( b )  t = 100, I1 = -0.03, showing the A-vortex which forms from the 
secondary instability; (e) t = 124, I1 = -0.04, showing the open-tip h-vortices. 

seems rather obvious pressure has rarely been used to locate vortices, since it is 
difficult to measure experimentally. It is not guaranteed that every pressure 
minimum is a vortex, and one really needs a confirming plot of the local velocity 
vectors in a plane perpendicular to the axis of the vortex, and in a reference frame 
moving with the vortex, to be certain that a vortex exists. Pressure proved to be a 
useful diagnostic in a study of the compressible mixing layer by Sandham & 
Reynolds (1991), where a close correspondence was found between the structure of 
the pressure field and the transport of a passive scalar. 

Both the second invariant I1 and the static pressure p' (relative to the mean well 
pressure) have been used in the current work. The conclusion is that the different 
measures of a vortex are useful at different stages of the transition 
process. In the early stages, where the vortices are relatively weak, I1 appears to be 
a good measure. Figure 2 shows the computational box together with a surface of 
constant 11, whose level was chosen to be close to the negative maximum. The 
sequence shows the evolution from a two-dimensional finite-amplitude TS wave a t  
time t = 0 in the simulation, through the A-vortex stage at t = 100, and eventually 
leading to an open-tip A-vortex, as observed by Hama & Nutant (1963). Similar 
results were obtained by H. Vollmers (1984, unpublished) using data from Kleiser 
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FIQURE 3. The maximum and minimum of pressure p’ (relative to the mean wall pressure) in the 
flow field as a function of time. Note the sharp change a t  t = 134, the strong variations during 
transition, and the calming of the flow for t > 180 as a mature turbulent state is approached. 
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FIQURE 4. Three views of the surface of pressure p‘ = -0.014 at t = 138. 

(1982) and plotting the discriminant of the velocity-gradient tensor (Vollmers, 
Kreplin & Meier 1983). The symmetry between the upper and lower channel halves 
(see $2.1) and the periodicity in x1 and x2 should be noted in all our figures. As new 
vortices began to appear in the flow the utility of I1 diminished, since the flow 
pictures became too complicated. A better measure for locating the new vortices 
turned out to be the pressure. A plot of the minimum and maximum of p’ in the flow 
field as a function o f t  is shown on figure 3. It can be seen that a dramatic change 
takes place at around t = 134, when strong vortices emerge from the shear layer. This 
point appears to be very well defined and could perhaps be used to define the onset 
of breakdown precisely. These new vortices have a very prominent pressure 
depression in their cores. A visualization in three dimensions is shown on figure 4 at 
t = 138, together with top and side views. A detailed description of these vortices is 
postponed until the next section. In this paper we are interested in the later stages 
of transition, and the pressure has proved to be the most useful scalar quantity to 
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FIGURE 5. View of the high-shear layer (tIv,/as, = 1.65) at t = 128 from Gilbert (1988). Note 
that two periods are plotted in the streamwise direction. 

locate vortices. In  important cases, as pointed out in the text, we have used I1 and 
velocity vectors, to ensure some redundancy in the identification of a vortex. 

3. High-shear-layer roll-up and vortex evolution 
The A-vortex, which develops from the secondary instability in plane channel 

flow, generates a shear layer. The mechanism for the formation of this shear layer is 
vortex stretching and convection, as demonstrated in a simpler flow by Stuart (1965, 
1984). A view of this shear layer, located by an iso-surface of high avl/ax3 is shown 
on figure 5 (from Gilbert 1988). Fluid that is ahead and to the sides of the A-votex 
is forced down towards the wall, resulting in high shear at the wall. Behind the A- 
vortex, fluid is moved away from the wall and vortex stretching results in a region 
of high shear that is detached from the wall. It is this region of high shear, situated 
near the plane of symmetry x2 = $L2, that first becomes important. This plane of 
symmetry is known as the ‘peak’ plane, since the velocity fluctuations, measured 
over one TS cycle, are largest here compared to other spanwise locations. The other 
plane of symmetry a t  x2 = 0 is known as the ‘valley’ plane. 

The high-shear layer a t  the peak plane develops a kink a t  around time t = 136 in 
the simulation. This can be seen on figure 6(a),  which shows a cut through the shear 
layer at  the peak plane in the lower half of the channel for times t = 134 to 146. 
Contours of shear avl/ax3 equal to 2, 4 and 6 are shown. The first kink in the shear 
layer occurs a t  t = 136 (xl = 2.4, x3 = -0.2). This can be compared with the first 
spike stage in Kovasznay et al. (1962). The kink in the shear layer moves t o  the right 
as time proceeds, indicating that it is moving at a velocity higher than the phase 
speed of the TS wave, with which the computational domain moves. The velocity of 
the kink is approximately 75% of the laminar centreline velocity. 

The kink in the high-shear layer indicates the roll-up of a vortex. Figure 6 (a) shows 
pressure contours for the same times as in figure 6(a).  The pressure is plotted in 
intervals of 0.005, with negative values (low-pressure regions) shown with dashed 
contours. The vortex that is responsible for the kink in the shear layer shows up as 
a region of low pressure, with locally circular pressure contours, a t  t = 136 (zl = 2.5, 
x3 = -0.2). The same regions showed up as negative minima in I1 from equation (l), 
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FIGURE 6. Cuts through the peak plane for times t = 134 to 146: (a) shear (awl/ax3 = 2, 4 and 
6) ; (a) pressure p' (contour spacing 0.005, negative contours dashed). 
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FIGURE 7. Comparison of various methods of location of vortices: (a) contours of p', (a) contours 
of I1 (in each case dashed negative contours correspond to vortices) and ( c )  local velocity vectors 
for the vortex near x1 = 0.5, x3 = -0.3. 
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FIGURE 7. Comparison of various methods of location of vortices: (a) contours of p', (a) contours 
of I1 (in each case dashed negative contours correspond to vortices) and ( c )  local velocity vectors 
for the vortex near x1 = 0.5, x3 = -0.3. 
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F’IQURE 8. Sketch of the shear-layer roll-up process, showing the observed levels of roll-up. 
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FIQURE 9. Trajectories of the vortices that form in the shear layer, located by the minima of 
pressure at the peak plane : -, lower; ---, upper channel half. The reference frame is chosen so 
that the TS wave is stationary. The circles show the locations of vortex interactions. 

and also as locally circular instantaneous streamlines, when a reference frame 
moving with the pressure minimum was chosen. Thus, the kinks in the shear layer 
are definitely associated with the roll-up of vortices. A direct comparison of the 
various measures of identifying a vortex is made on figure 7 at the slightly later time 
of t  = 140. Figure 7 (a) shows p‘ contours, figure 7 (b) contours of 11, and figure 7 (c) 
velocity vectors for the vortex near x1 = 0.5, x3 = -0.3 (using a reference velocity of 
0.8). All the measures agree on the location of vortices in the flow. 
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A total of five vortices develop in the shear layer in each channel half, and appear 
as local pressure minima on figure 6 ( b ) .  A simplified picture of the shear-layer roll- 
up is sketched on figure 8. The roll-up produces pairs of vortices, although the 
second vortex in each pair can be so weak as to be insignificant. The pairs of vortices 
are separated from each other by a fairly large distance (very roughly f of a TS 
wavelength). We will refer to the vortices by the channel half in which they originate 
(L = lower, U = upper), the number of the roll-up (1, 2 or 3), and an additional 'a' 
for the second vortex of each pair. From the first level of roll-up we have the vortex 
L1, which develops at t = 136 (xl = 2.5, x3 = -0.2 on figure 6), and Lla,  which can 
be seen at t = 140 (xl = 3.5, x3 = -0.3). The second level of roll-up produces L2 at 
t = 138 (xl = 5.5, 2, = -0.35) and L2a at t = 142 (2, = 5.0, x3 = -0.5). The third 
and last level of roll-up produces L3 at t = 144 (xl = 4.1, x3 = -0.5). The vortex L3 
rolls up the fluid at the end of the original shear layer and is the last vortex to develop 
out of the shear layer. Vortices L1, L2, L2a and L3 are strong enough to  produce a 
significant local drop in pressure. 

The movement of the various vortices is shown on an x,-t plot on figure 9. The 
vortices are located by their pressure minima in the peak plane. Vortices in the lower 
half of the channel are marked with solid lines, while vortices in the upper channel 
half are shown dashed. Interactions between the vortices are marked with circles and 
will be discussed later. On the plot a trajectory at  45" would be a vortex moving a t  
the laminar centreline velocity, while a vertical line would be a vortex moving with 
the velocity of the TS wave. It can be seen how the vortices L2 and U2 speed up with 
time, indicating that the cores of the vortices move towards the centre of the 
channel. Vortices developing later in the simulation tend to be moving more slowly 
than the earlier vortices since they originate in the portion of the high-shear layer 
closer to the wall. 

The time of each vortex formation can be quantified by finding the time when the 
pressure drops 0.025 below the mean wall pressure. Thus computed, these vortices 
form at t = 136, 139, 143 and 146. The times compare well with the times for the 
spike stages 2 to 5, found by Gilbert (1988) to be at t = 136, 140, 144 and 148. 
Gilbert's first spike stage appears to be associated with the formation of the high- 
shear layer at around t = 128. It should be noted that the definition of a spike is a 
rather subjective matter. The vortices that show up in the pressure contours are 
small compared to the TS wavelength, and relatively energetic since the pressure 
depression is much stronger than for the original A-vortex. These vortices will clearly 
show up as spikes in the velocity signal measured by a probe in the flow (cf. figure 
22 in Gilbert 1988). 

The mechanism for growth of the vortices once they have formed is evidently that 
of a shear-layer instability, with energy being extracted from the local mean flow into 
the vortex. However, there are significant differences between the vortex formation 
and a Kelvin-Helmholtz instability wave. If the vortices were to develop from an 
instability wave in a uniform shear layer, triggered by background noise, one would 
expect them to be approximately uniformly spaced along the shear layer, and not to 
occur at the widely spaced intervals actually observed. Of course, the shear layer 
encountered in the simulation is not uniform and is inclined relative to the flow 
direction. We discuss the vortex formation process further in $7.2. 

The three-dimensional evolution of the shear-layer vortices is next considered, 
using a surface of constant pressure to locate the cores of the vortices in space. On 
figure 4 oblique, side and top views of the surface p' = -0.014 at t = 138 were shown. 
When viewing these plots one should bear in mind the periodicity of the flow in x1 
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and x2. The staggered symmetry between the upper and lower channel halves was 
explained in $2.1. The first two levels of roll-up (vortices L1, L2, U1 and U2) are 
visible and can be compared with the cuts through the peak plane in the lower 
channel half (figure 6b). A t  this time in the simulation all the vortices have a banana 
shape, centred on the peak plane with the ends pointed towards the wall. 

The vortical structures which originate from the shear-layer roll-up dominate the 
flow up to time t = 148. A sequence from t = 141 to 148 is shown on figure 10, for the 
pressure surface p’ = -0.025. The first vortices L1 and U1 remain weak, and do not 
show up a t  this (lower) pressure level. From t = 141 to 147 the vortices L2 and U2 
develop legs and have the appearance of hairpin vortices. The vortices L2a and U2a 
appear first as barrel-shaped vortices ( t  = 144). They then interact with the hairpin 
vortices in the other side of the channel (L2a interacts with U2, U2a interacts with 
L2). This interaction can be classified as a cross-channel interaction and was marked 
on figure 9 with a circle at  t = 143. Such interactions have been observed in 
simulations by Zang & Krist (1989). They found them to be Reynolds-number 
dependent, and less important at higher Reynolds numbers. The head of the hairpin 
wins out in this interaction and all that is left of the 2 a vortices are the ‘streamers ’ 
behind the hairpin vortices, visible at t = 146. The third and last level of roll-up 
appears as barrel-shaped vortices (L3 and U3) at t = 147, which interact with the 
hairpins at t = 148 (L2-L3 and U2-U3). This interaction can be classified as an 
overtaking interaction, since the second level of roll-up interacts with the third level 
of roll-up from the next shear layer to the right. Such interactions have been 
observed in the experiments (see Klebanoff et al. 1962), and do not appear to be 
affected by the temporal nature of the simulation. The location of this interaction is 
marked at t = 148 on figure 9. The main hairpin vortices L2 and U2 were also 
observed in surfaces of 11. A qualitative difference was that the legs were longer with 
this measure. Vortices L1 and U1 had a hairpin shape when measured with 11, but 
only the heads developed a pressure minimum. The other vortices did not appear as 
hairpins, either in p or 11. 

In isolation a hairpin vortex will develop into a vortex ring, as shown in a vortex- 
filament computation by Moin, Leonard & Kim (1986). In their computations a 
hairpin vortex was found to pinch off, leaving behind a vortex ring. This pinching 
process appears to be taking place in the present numerical simulation and is visible 
at  t = 147 near the tip of the hairpin. However, at about this time the hairpin 
interacts with the third level of roll-up and, since the head of the hairpin and this roll- 
up are rotating in the same direction, joining into a vortex ring is not possible. Thus, 
the evolution of a hairpin vortex into a vortex ring is sensitive to other events in the 
flow. 

Many of our observations from the simulations are similar to observations made 
by Hama & Nutant (1963) in boundary-layer transition, although we must explain 
some of the differences in nomenclature. What they refer to as a vortex loop is our 
A-vortex. It originates as a warping of the TS wave, and eventually develops into an 
open-tip A-vortex (see figure 2). Hama & Nutant also observed a breakup of the high- 
shear layer into concentrated vortices. What they refer to as a secondary A-vortex, 
and later as an R-vortex is probably our hairpin vortex L2. The tangling which they 
observed at the neck of this vortex could be the effect of the hairpin vortex 
developing towards a vortex ring. They refer to this tangle of vortices as the 
appearance of turbulence. Their ‘tertiary’ vortices are probably the other vortices 
that develop from the shear layer, for example L3. Thus to a large extent the 
observations of Hama & Nutant appear to be compatible with the current analysis 
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FIQURE 10. A time sequence of the pressure surface p’ = -0.025 showing the three-dimensional 
evolution of the vortices that originate in the high-shear layer. Vortices L2 and U2 develop into 
pronounced hairpin vortices. 

and suggest a very close correspondence between boundary-layer and channel flow 
transition. 

The breakup of the hairpin vortex and the interaction with the third and last level 
of roll-up marks the end of this phase of the transition process. We are left at t = 150 
with the structure shown on figure 11. The interior of the channel is a complicated 
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FIQURE 11. Three views of the surface of pressure p’ = -0.025 at t = 150 after 
the breakup of the hairpin vortex. 

tangle of vortices. However, the top view shows that this is still confined to a small 
region around the peak plane where the original roll-up took place. Also the skin 
friction and the centreline velocity are still close to their laminar values (see later). 
Thus we still have not arrived at  a turbulent flow. 

4. Elementary wall turbulence 
In  order to determine whether transition to turbulence is complete, one must 

decide what is meant by turbulence. In  this section the development of the 
mechanics of near-wall turbulence will be examined. Detailed experimental 
observations of this phenomenon, which is characterized by high wall shear, sublayer 
streaks, ejections and sweeps, began with the work of Kline et al. (1967). A review of 
the current level of understanding can be found in Robinson (1991). Earlier work on 
this theme, using the present simulation database, can be found in Gilbert (1988) and 
Gilbert & Kleiser ( 1990). 

A new shear layer forms at  the peak plane by t = 151. This is shown on figure 12 
by contours of shear (levels 2, 4 and 6 as before) and pressure (intervals of 0.01), 
together with times t = 153 and 155. The new shear layer is located in the first half 
of the channel 0 < x1 < iLl  at approximately x3 = -0.7. We will refer to this shear 
layer as a second-generation shear layer. It is rather narrow in the spanwise direction 
(maximum width &) and appears to form by the same mechanism of vortex 
stretching and convection (Stuart 1965) that led to the shear layer around the A- 
vortex. A sketch of the location of the shear layer is shown on figure 13. The vortices 
that cause the shear layer are nearly streamwise vortex pairs in the near-wall region 
that arise from the previous events in the flow. In the current stimulation there are 
three such pairs of vortices. One pair arises from the remnants of the hairpin legs, 
another from the remnants of the cross-channel interaction, and a third from the L1 
vortex that was weak and inconsequential in the earlier stages of transition. The last 
pair of vortices appears to play the strongest role in generating the second-generation 
shear layer shown on figure 12. These vortices can be seen on figure 11 near the lower 
wall at  xJL, = 0.42 and near the upper wall at  x,/L, = 0.92. 

As well as creating the detached secondary shear layers, such streamwise 
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FIQURE 12. The formation and roll-up of a second-generation shear layer: (a) t = 151, (b)  153 and 
(c) 155. In each case the upper plot shows shear (contour levels avl/az3 = 2,4, and 6) and the lower 
plot pressure (contour spacing 0.01) in the peak plane. 
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FIGURE 13. Sketch of the generation of new shear layers around streamwise vortices by a 
process of vortex stretching and convection (after Stuart 1965). 
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FIQURE 14. Wall shear at t = 155, showing the first regions of high wall shear. Contours are 
shown of av,/ax, = 0 (- - - - - ), 10 (-) and 20 (- ---). 

vortices act to generate high wall shear (see figure 13) on the opposite side of the 
vortex to the detached shear layer. Figure 14 shows the shear av,/ax, at the wall a t  
t = 155. For the first time in the simulation there are regions of high wall shear. These 
regions form a t  a distance of &L2 from the peak plane, whereas the original vortices 
that caused them were located at approximately +A2. There is a time delay of 
approximately 4 time units between the appearance of the vortices and the 
generation of high wall shear. This allows for convection towards the wall to take 
place. The region between the two areas of high wall shear, either side of the 
symmetry plane x2 = g2, is the first low-speed streak in the simulation. The wall 
shear at t = 155 can be compared with the plot of the sublayer velocity from 
Nishioka & Asai (1984). The same general pattern of the two short regions of high- 
speed fluid around a low-speed streak can be seen. One apparent difference between 
simulation and experiment is the observation in this experiment of a region of high 
shear on the wall at the nominal peak plane. Such a region is not observed in the 
simulations. The explanation lies in the fact that in the experiment there was no 
spanwise forcing. Thus the streaks that form are not exactly symmetric about the 
peak plane, and it appears that the peak plane chosen in the experiments cuts 
slightly across one of the high-speed streaks. Thus one is seeing high shear in the 
experiments that is lying slightly off-peak in the simulations. The spanwise spacing 
of the first streaks, measured in wall units of the fully developed flow, is between 80 
and 150, depending on streamwise position and time. This is comparable to the value 
of 120 found by Nishioka et aE., and the average turbulent value of about 100. This 
characteristic length seems to be set from very early on in the transition process, 
since the spacing of the streaks is fixed by the spacing of the streamwise vortices 
which evolve from the first shear-layer roll-up. 

A wave-like instability develops in the detached secondary shear layer. In the 
pressure contours at t = 151 and 153 (figure 12) one can observe along the length of 
the shear layer the appearance of alternatively positive and negative p’. The low- 
pressure regions correspond to the cores of newly developing vortices, while the high- 
pressure regions are the stagnation-point regions between successive vortices. The roll- 
up of these new vortices breaks up this shear layer by t = 153. The location of the 
vortices along the shear layer indicates that once again we have a shear-layer 
mechanism for strengthening the vortices. The original disturbances are the large 
irregularities along the shear-layer length, from the preceding events in the flow. The 
application of shear then causes roll-up into discrete vortices. 

The shear-layer roll-up process described in the preceding paragraph has many 
similarities with the development of an artificial low-speed streak, investigated 
experimentally by Acarlar & Smith (1987). They were interested in the problem as 
a model of the near-wall region of the turbulent boundary layer. The low-speed 
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FIGURE 15. View of one of the vortical structures that developed from roll-up of the second- 
generation shear layer. The pressure surface p' = -0.02 is shown at t = 156 in a small subsection 
of the computational domain. 

streak was generated by blowing in a streamwise slot. This generated an inflexional 
shear layer away from the wall, which rolled up into vortices. These then evolved 
into a hairpin shape. A similar process was observed in the simulation, although clear 
hairpin vortices were not observed. In  particular, one of the vortices developing out 
of the second-generation shear layer was followed as it evolved in time. This vortex 
can be seen at t = 155 in the shear and pressure contours at  z1 = 3.2 on figure 12. This 
vortex forms initially with a barrel shape at t = 153. Figure 15 shows a view of this 
region of the flow at the slightly later time t = 156. Only a reduced domain is shown, 
since we are here looking for small-scale features in an increasingly complicated flow. 
Strong streamwise vortices have formed in the near-wall region. These vortices are 
connected to  each other by a thin strand of low pressure, which is all that remains 
of the original vortex. It is not clear whether this vortex has evolved into the 
streamwise vortices, or whether is has simply acted as the trigger to convert the 
vertical vorticity at the edges of the high-speed streak into streamwise vorticity. In  
either case the final result is a strong streamwise vortex in the near-wall region. The 
final structure does not have a clear hairpin shape, but it does appear that the 
mechanism at work is very similar to that described by Acarlar & Smith. Similar to 
turbulent flow (Kline 1990) the vortices that are observed are of much shorter 
streamwise length than the low-speed streaks. 

By time t = 155 in the simulation it appears that a cyclical process has been 
established that is capable of repeating itself indefinitely. This process is sketched on 
figure 16. Streamwise vortices near the wall generate detached shear layers as well as 
regions of high wall shear. The former roll up into new vortices, which either evolve 
in three dimensions into new streamwise vortices or serve to kick the vertical 
vorticity at the interface between the low-speed and high-speed streaks into 
streamwise vorticity. The cycle continues when the new streamwise vortices generate 
new shear layers. This process contains many of the characteristics of near-wall 
turbulence. It includes a mechanism for the generation of regions of high wall shear, 
with low-speed streaks in between. The individual roll-up events in the shear layer 
generate fluid motions away from the wall (ejections) and motions towards the wall 
(sweeps). The wave-like form of the shear-layer roll-up is a possible explanation of a 
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FIGURE 16. Schematic of the cyclical process of near-wall turbulence, as it appears in the late 
stages of the transition process. 

burst (a high-activity process, incorporating a number of ejections and sweeps). A 
difference between this elementary turbulence and recent ideas on fully developed 
turbulence (Robinson 1991; Jimenez & Moin 1991) lies in the symmetry of the 
current process. The first turbulence forms near the peak plane, which is a plane of 
symmetry in the simulation (as in transition experiments with forced TS waves). 
Thus the vortical structures that form are also symmetric. However, such symmetric 
structures are rarely observed in simulations of fully developed turbulence, where 
single quasi-streamwise vortices are the rule. In this connection we can make two 
comments. First, it  appears that the imposed symmetry is not a barrier to the 
formation of a turbulent flow. Indeed, turbulence statistics from the current 
simulation (Gilbert 1988) are almost identical to the statistics for Kim et a2 (1987), 
who did not assume any symmetries. Secondly, it  would be useful to know whether 
the shear-layer development and roll-up is an important a part of the asymmetric 
mechanisms of turbulence as of the symmetric case. 

5. Predictability 
A characteristic of turbulent flow is its unpredictability, in the sense that two 

turbulent flows which are initially very close to the each other will diverge over time 
and eventually become completely decorrelated. In this section the issue of 
unpredictability in the transitional channel flow is investigated, but treated 
separately from the development of the mechanics of turbulent flow (see $4). 

The symmetry in the initial condition between the upper and lower channel halves 
can be exploited to reveal the nature of the growth of unpredictability. This 
symmetry was not incorporated into the numerical method (unlike the spanwise 
symmetry) and was therefore free to disappear due to the unpredictability effect, 
triggered by differences in the initial condition or by roundoff error. The accuracy of 
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FIGURE 17. Mean wall shear measured on the upper (-) and lower (-----) channel walls, 

showing the loss of symmetry at later times in the simulation. 
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FIGURE 18. The asymmetry measure qw), showing the loss of predictability during the 
transition process. Note the sharp change of slope a t  t = 130. 

the symmetry in the initial condition was found to be 5 decimal places in the 
pressure, probably fixed by the method of including the linear stability eigen- 
functions. An example of the loss of symmetry is shown by the mean wall shear, 
plotted on figure 17 for both the upper and lower wall during the simulation. It can 
be seen that initially the curves lie on top of each other, due to the initial symmetry. 
However, from around t = 165 onwards the two walls have shear levels that are 
visibly different from each other. At certain spanwise positions the differences were 
found to be rather large. The question to be addressed is where this loss of 
predictability comes from. 

A quantitative measure of the asymmetry can be defined by a functional g, given 

where fi and f, are the values of a function f in the lower and upper channel halves 
at points where fi =f, with perfect symmetry, and the summation is over 
N = Nl xN, x points. This quantity is analogous to the largest Lyapunov 
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exponent of the flow. It is different in that the two channel halves are not strictly 
independent of each other, and the level of the asymmetry is not maintained 
infinitesimally small. A plot of g(p’) is shown on figure 18. Several distinct regions are 
apparent. For t < 120 a nearly linear growth in g is obtained (ignoring the initial 
transient, t < 40). Expressing the growth of the asymmetry as evt, we have a = 0.05 
in this region. At these times the flow is governed by the growth of the secondary 
instability, and it is clear that if the two channel halves have slightly different initial 
conditions the difference will grow at the secondary instability growth rate. This 
growth rate was found by Herbert (1983) to be u = 0.0484, which compares well with 
the growth rate of the asymmetry. Around t = 130 there is a dramatic change. The 
value of a increases sixfold to a x 0.32, which lasts until the two channel halves 
become decorrelated and the value of g reaches a plateau (t > 170). 

The increased value of a in the late stages of the transition process is very 
interesting and may be due to several physical effects. One is the appearance of 
strong shear layers for these later times, which will amplify any differences between 
the two channel halves very strongly, owing to the high growth rate of the in- 
flexional instability. Another physical phenomenon is the appearance of discrete 
vortices for these later times in the transition process. As vortices move and interact 
with each other, small differences in the initial position will be amplified and will lead 
to a loss of predictability. It is remarkable that, in spite of the multitude of physical 
phenomena at  work and the large spanwise variations, the growth of unpre- 
dictability continues a t  the same rate (a = 0.32) over the large time span t = 140 
to 170. For comparison, we can quote values for u from MBtais & Lesieur (1986), who 
studied unpredictability in two-dimensional turbulence using EDQNM theory. They 
obtained a = 0.26 for unforced isotropic turbulence, and IT = 0.38 for the forced case. 

The time of t = 170 for decorrelation becomes larger if the initial symmetry is 
accurate to more decimal places. To test this another simulation was run in which the 
symmetry in the initial condition was imposed to machine accuracy (64 bits). The 
result was that the appearance of the plateau corresponding to decorrelation was 
delayed to t % 210. What is notable is that the loss of predictability occurs very late 
in the transition process. Up to this point the details of the flow are determined 
entirely by the initial condition of the simulation. In particular it should be pointed 
out that the roll-up of the shear layer into discrete vortices occurs while the 
asymmetry is still insignificantly small, and that therefore the vortex roll-up process 
is deterministic, and not triggered by the growth of random background noise. This 
is in agreement with the findings of Borodulin & Kachanov (1989), but contradicts 
the conventional tertiary instability concept from for example Nishioka et al. (1980). 

6. Large-scale structures and spanwise evolution 
The method of locating vortical structure by low-pressure regions was applied to 

35 data fields in the late stages of transition, from t = 138 to 172. Three large-scale 
structures (excluding the original A-vortex) were found to develop and then break 
up. Three views of the first of these structures, the hairpin vortex, are shown on 
figure 19(a) for the pressure surface p’ = -0.025. The origin and development of this 
structure have been described in $3. The details in the pressure surface can be traced 
to the interactions between the various levels of roll-up of the shear layer that formed 
around the A-vortex from the secondary instability of the flow. The hairpin structure 
breaks up a t  t = 148. 

A new structure appears in the flow from t = 153 to 157, shown at t = 156 on figure 
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FIGURE 19. Large-scale structures: (a )  hairpin vortex at  t = 145 (p’ = -0.025), (b)  vortex at  
t = 156 (p’ = -0.035) and (c) late inverted A-vortex at t = 162 (p’ = -0.035). 
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19(b) for the pressure surface p’ = -0.035. The strongest regions of rotation (lowest 
pressure) are the trailing legs a t  x1 = &, about halfway between the peak and valley 
planes. Very near to the wall these legs are oriented in the streamwise direction. The 
nearness to the wall means that this structure leaves a very strong ‘footprint’ in 
terms of wall pressure. The origin of this structure is not clear, but parts of it trace 
back to the third level of roll-up of the original shear layer. This structure evolves 
rapidly in time and breaks up at  about t = 157. 

A third and final large-scale structure appears briefly at  t = 162 near the valley 
location. This is shown on figure 19(c) for p’ = -0.035, and appears as a A-shaped 
vortex, though with the point of the A facing upstream, which is opposite to the 
A-vortex that developed from the secondary instability. It is located at  around 
x1 = :L1 in the lower channel half, and at  around x1 = +L1 in the upper channel half. 
This structure exists very late in the transition process - at the same time that the 
features of developed wall turbulence have appeared in the peak region. The origin 
of this structure, and its relation t o  the high-shear layer at  the valley (observed by 
Gilbert 1988), needs further investigation. 

A t  the same time that these large-scale structures are forming and breaking up, the 
region in which the near-wall flow contains the features of wall turbulence is 
extending in the spanwise direction. The wall shear is shown on figure 20 for levels 
of 0 (dashed), 10 and 20 a t  t = 162, 172 and 182. At t = 162 the region around the 
peak plane shows the streaky structure that is characteristic of the turbulent 
sublayer. The interior of the channel calms down at the later times and the streaky 
structure spreads across the whole of the channel width. 

The existence of strong spanwise variations in the transition process is well known 
(more details can be found in Gilbert 1988), and can be clearly seen in the 
instantaneous views of the transition process. These variations would be obscured by 
conventional averaging across the whole flow domain. Instead, we divide the region 
between the peak and valley into four equally spaced strips and present averages in 
these strips. Region 1 denotes the strip next to the valley plane and region 4 the strip 
next to the peak plane. The strong dependence of wall shear on spanwise position is 
shown on figure 21 (a) .  The time history shows that high wall shear first develops in 
region 4 (peak), and that by t = 162 high wall shear is found in both regions 3 and 
4, while the wall shear in region 1 is still near its laminar value. This development of 
high wall shear in region 1 (valley) is retarded relative to regions 3 and 4 by 1&15 
time units. The wall shear in all regions shows an overshoot relative to the turbulent 
time-averaged value of 9.4. The mean centreline velocity also shows a strong 
dependence on spanwise position. Figure 21(b) shows how the mean centreline 
velocity departs from the laminar value in region 4 (peak) at t = 143, but remains 
close to the laminar value in region 2 up to t = 163. Similar spanwise dependence was 
observed in the mean velocity profiles and in plots of the maximum and minimum 
pressure during the simulation. Figure 22 shows mean velocity profiles in each region 
at various times during the simulation. It can be seen that in region 4 the mean 
velocity profile has a recognizably turbulent form by t = 162, while in region 1 a 
turbulent profile is not obtained until t = 178. 

7. Discussion 
7.1.  Generality of findings 

To check the generality of the observations made in the preceding sections for K-type 
transition, a similar investigation has been made for both H-type (subharmonic) and 
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FIGURE 20. Wall shear at (a) t = 162, (6) 172 and (c) 182, showing the spreading of the streaky 
sublayer structure in the spanwise direction. Contours are shown of av,/az, = 0 (- - - - -), 10 (-) 
and 20 (- - - -). 

mixed-type transition. The initial conditions for these simulations were described in 

The H-type transition is interesting because the lower half of the channel 
undergoes transition before the upper half, and thus cross-channel interactions are 
avoided. This case may therefore have more features in common with boundary- 
layer transition. A summary of the observed process is shown in the vortex trajectory 
plot on figure 23. Vortices L1, Lla,  L2, L2a, L3 and L3a were observed. Vortex L1 
developed into a headless hairpin vortex (only the legs showed up as strong pressure 
minima). Vortex Lla had no clearly identifiable shape, while vortices L2, L2a and 
L3 all began life with a banana shape, evolving into what might be loosely termed 
hairpin vortices, but without the long legs of a ' true ' hairpin vortex (such as in figure 
19a). 

The mixed-type transition was the most complex, although definite shear-layer 
roll-up could be observed, producing vortices Ll ,  Lla,  L2, L2a and L3 in the lower 
channel half and vortices U1 , U2, U2a and U3 in the upper channel half. These are 
shown on a trajectory plot on figure 24. Almost immediately after formation there 
was a strong cross-channel interaction between vortices L2 and U l ,  leaving a 
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FIQURE 21. Statistics in four strips (1, -; 2, - - - - - .  I 1  3 - - - -. , ,  4 - - -) : (a) wall shear (aver- 
age turbulent value 9.4) and (b) centreline streamwise velocity (average turbulent value 0.755). 

x3 x3 

FIGURE 22. Mean velocity profiles, averaged in four strips: (a) region 1 = valley, (b) region 2, (c) 
region 3, (d) region 4 = peak, at times 0 (-), 146 (- - - - -), 162 (----) and 178 (---). 
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FIQURE 23. Trajectories of the vortices forming from the high-shear-layer roll-up from a 
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FIGURE 24. Trajectories of the vortices forming from the high-shear-layer roll-up from a 
simulation of mixed transition. 
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complex three-dimensional vortex behind. Only one of the vortices (U2) turned into 
a recognizable hairpin vortex. 

Although the detailed interactions between the vortices were very different 
between the three simulations studied, important elements remained the same. The 
original shear-layer roll-up followed the general behaviour sketched on figure 8, with 
vortices forming in pairs, separated by about a of a TS wave. It is interesting to note 
that the shedding frequency did not change for these new cases. Also, from the 
staggered arrangement of the A-vortices in subharmonic transition it is clear that the 
later roll-up of vortices in the shear layer is not caused by the overlapping of vortices 
from earlier roll-up processes. In  the subharmonic case the box length is large enough 
so that there are none of these overtaking interactions. Thus the roll-up mechanism 
appears to be inherent to the A-vortex and not influenced by outside events in the 
flow. 

In  each simulation second-generation shear layers were again observed which 
developed a new instability (the details were again different - the shear layer was 
inclined at  30’ for the H-type simulation, as compared to near-horizontanl for the K- 
type simulation). In  the case of H-type transition the staggered symmetry was 
exploited to check the issue of loss of predictability, with similar results to K-type 
transition. 

7.2. Interpretation of ‘breakdown’ 
Until about 10 years ago the common explanation for the formation of spikes in the 
velocity-time traces was that a high-frequency instability took place in the high- 
shear layer, amplifying background disturbances in the flow. Thus, beyond the 
primary and secondary instabilities there was still a need to invoke a stochastic 
input in order to get transition to turbulence. This picture was doubted by Kleiser 
(1982, 1985), on the basis that the high-frequency components of the energy 
spectrum grew continuously from the secondary instability stage, long before the 
appearance of the high-shear layer. Kachanov et al. (1985) claimed that the 
development of the spikes is an entirely deterministic event, and is not involved in 
the development of unpredictability (Kachanov calls this ‘randomization ’) in the 
flow. This viewpoint is entirely supported by the observation in $ 5  of this paper that 
the shear-layer roll-up occurs in exactly the same way in both halves of the channel, 
well before the two halves become decorrelated. This is not to say that the instability 
of the shear layer is not important, and we do not doubt the results of the instability 
calculations based on instantaneous velocity profiles made by Nishioka et al. (1980). 
This kind of instability is one route to the loss of predictability of the flow. It may 
even, in applications with high background noise, lead to premature roll-up of the 
high-shear layer. However, it is important to note that the extra background noise 
is not a necessary condition for the generation of turbulence. Turbulence can develop 
in a quite deterministic fashion from the secondary instability stage onwards. 

Elements from the tertiary instability concept do seem to be correct. The vortices 
do develop in the shear layer, and the mechanism for their growth is the same as the 
mechanism for growth of vortices in a shear layer triggered by an inflexional 
instability. The question is in the origin of the disturbance that triggers the growth : 
random background noise, or a deterministic kick. In this respect, we can draw an 
analogy to the vortices that form when a free shear layer, such as a mixing layer, is 
started. A start-up vortex pair is observed that grows and moves downstream, 
followed by the growth of a Kelvin-Helmholtz instability in the newly established 
shear layer. The process, including the generation of a pair of vortices, can be 
observed in a simulation by Grinstein, Oran & Boris (1985). (The resolution of this 
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simulation might appear borderline, but based on some earlier work by the first 
author on spatially developing mixing layers it is believed that the start-up 
phenomenon has been correctly captured.) That we have two kinds of shear-layer 
phenomena is apparent if we ask the question: what happens as the background 
noise approaches zero ? In this case the Kelvin-Helmholtz instability has nothing to 
amplify and no vortices form. However, the start-up vortices remain. We believe 
that the spikes are the result of vortices that form deterministically, similar to the 
start-up vortices in a mixing layer. 

A theoretical description of the shear-layer vortex formation and evolution does 
not at present exist. The structure of the shear-layer evolution (as pairs of vortices 
separated by a fairly large distance, figure 8) suggests that a solitary-wave approach 
might be useful. In this case the pairs of vortices could form by splitting of a solitary 
wave. A separate mechanism would then have to be invoked to explain the nonlinear 
kick that serves to start the growth of each wave. The idea that the spikes might be 
treated as solitary waves has been pursued recently by the Novosibirsk group 
(Borodulin & Kachanov 1989; Kachanov 1990). Their work has mainly been to 
demonstrate certain similarities between the spikes and solitary waves. A useful 
theory of breakdown incorporating solitary waves seems distant. 

8. Conclusions 
By studying data from a direct numerical simulation of the complete transition 

process in plane channel flow, we have obtained a fairly complete picture of the 
formation, evolution and breakup of vortices in the late stages of transition, from the 
A-vortex stage (resulting from the secondary instability of finite-amplitude 
Tollmien-Schlichting waves) up to fully developed turbulence. Important results are 
the following. 

(i) A detailed investigation of the vortices that form in the high-shear layer 
around the A-vortices reveals that each roll-up generates a pair of vortices, although 
the second vortex in each pair is usually weak. Three levels of roll-up were observed, 
with a total of five significant vortices in each channel half. The vortices form as a 
result of a deterministic vortex-shedding process, rather than being triggered by the 
growth of random background disturbances. 

(ii) Only one of the vortices (from each set of five) is found to develop into a strong 
hairpin-shaped structure. Results from other simulations confirm that hairpin 
vortices are the exception, rather than the rule, for the vortices that develop from the 
high-shear layer around each A-vortex. The simplified statement, often found in the 
literature, that the high-shear layer rolls up into hairpin vortices, is therefore a little 
misleading. 

(iii) In the subsequent evolution it is found that interactions between vortices 
from opposite channel halves (cross-channel interactions), and between vortices in 
the same channel half (overtaking interactions), are important. Due to one of these 
interactions the hairpin vortex does not develop into a vortex ring. 

(iv) A cyclic sequence of phenomena is observed near the peak plane, which has 
all the important characteristics of near-wall turbulence. The starting point for this 
sequence is the presence of quasi-streamwise vortices in the near-wall region. These 
arise from the evolution of the vortices that form in the high-shear layer around the 
A-vortices. These quasi-streamwise vortices generate high wall shear and detached 
second-generation shear layers, which subsequently roll up into new vortices. The 
remainder of the transition process consists of the spreading of this mechanism to 
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other spanwise positions. Large-scale vortical motions play an important part in this 
process. 
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the initial post-processing software. H. Vollmers provided the graphics software for 
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